DAIKIN

technical data

III Selection procedure Table of contents

1 Selection procedure VRVII system based on cooling load Indoor unit selection 2
Outdoor unit selection2
Actual performance data. 3
Selection example based on cooling load 3
2 Capacity correction ratio
RX(Y)Q5M
RX(Y)Q8M, RXYQ22M. 6
RX(Y)Q10M 7
RXYQ12,14,24,36M. 8
RXYQ16M 9
RXYQ18,26,28,30,38,40,42,44M 10
RXYQ20,32,34,46M. 11
RXYQ48M 12
REYQ8,22M 13
REYQ10M 14
REYQ12,14,24,36M. 15
REYQ16M 16
REYQ18,26,28,30,38,40,42,44M 17
REYQ20,32,34,46M. 18
REYQ48M 19
3 Integrated heating capacity coefficient 20
4 Refnet pipe system
Refnet joints 21
Refnet headers 23
Reducers, Expanders 24
Closed pipes 24
Outdoor unit multi piping connection kit 25
Example of Refnet piping layouts. 27
5 REFNET pipe selection
RX(Y)Q5-10M, RXYQ12-48M 28
REYQ8~48M 29
Piping thickness 30

1 Selection procedure VRVII system based on cooling load

1-1 Indoor unit selection

Enter indoor unit capacity tables at given indoor and outdoor temperature.
Select the unit that the capacity is the nearest to and higher than the given load.

NOTE

1 Individual indoor unit capacity is subject to change by the combination. Actual capacity has to be calculated according to the combination by using outdoor units capacity table.

1-2 Outdoor unit selection

Allowable combinations are indicated in indoor unit combination total capacity index table.
In general, oudoor units can be selected as follows though the location of the unit, zoning and usage of the rooms should be considered.
The indoor and outdoor unit combination is determined that the sum of indoor unit capacity index is nearest to and smaller than the capacity index at 100% combination ratio of each outdoor unit. Up to 16 indoor units can be connected to one outdoor unit. It is recommended to choose a larger outdoor unit if the installation space is large enough.
If the combination ratio is higher than 100%, the indoor unit selection will have to be reviewed by using actual capacity of each indoor unit.

Indoor unit combination total capacity index table

Outdoor unit	Indoor unit combination ratio								
	130%	120 \%	110 \%	100\%	90\%	80\%	70\%	60%	50%
RXMO5M	162.5	150	137.5	125	112.5	100	87.5	75	62.5
RXM)Q8M/REYQ8M	260	240	220	200	180	160	140	120	100
RX(MQ10M/REYQ10M	325	300	275	250	225	200	175	150	125
RXYQ12M/REYQ12M	390	360	330	300	270	240	210	180	150
RXYQ14M/REYQ14M	455	420	385	350	315	280	245	210	175
RXYQ16M/REYQ16M	520	480	440	400	360	320	280	240	200
RXYQ18M/REYQ18M	585	540	495	450	405	360	315	270	225
RXYQ20M/REYQ20M	650	600	550	500	450	400	350	300	250
RXYQ22M/REYQ22M	715	660	605	550	495	440	385	330	275
RXYQ24M/REYQ24M	780	720	660	600	540	480	420	360	300
RXYQ26MMRYQ26M	845	780	715	650	585	520	455	390	325
RXYQ28M/REYQ28M	910	840	770	700	630	560	490	420	350
RXYQ30M/REYQ30M	975	900	825	750	675	600	525	450	375
RXYQ32M/REYQ32M	1,040	960	880	800	720	640	560	480	400
RXYQ34MMEYQ34M	1,105	1,020	935	850	765	680	595	510	425
RXYQ36M/REYQ36M	1,170	1,080	990	900	810	720	630	540	450
RXYQ38M/REYQ38M	1,235	1,140	1,045	950	855	760	665	570	475
RXYQ40MMREYQ40M	1,300	1,200	1,100	1,000	900	800	700	600	500
RXYQ42M/REYQ42M	1,365	1,260	1,155	1,050	945	840	735	630	525
RXYQ44MMEYQ44M	1,430	1,320	1,210	1,100	990	880	770	660	550
RXYQ46MMREYQ46M	1,495	1,380	1,265	1,150	1,035	920	805	690	575
RXYQ48M/REYQ48M	1,560	1,440	1,320	1,200	1,080	960	840	720	600

Indoor unit capacity index

Model	20	25	32	40	50	63	80	100	125	200	250
Capacity index	20	25	31.25	40	50	62.5	80	100	125	200	250

1 Selection procedure VRVII system based on cooling load

1-3 Actual performance data

Use outdoor unit capacity tables
Determine the correct table according to the outdoor unit model and combination ratio.
Enter the table at given indoor and outdoor temperature and find the outdoor capacity and power input. The individual indoor unit capacity (power input) can be calculated as follows:
ICA $=\frac{\text { OCA } \times \operatorname{INX}}{\text { TNX }}$
TNX
ICA: Individual indoor unit capacity (power input)
OCA: Outdoor unit capacity (power input)
INX: Individual indoor unit capacity index
TNX: Total capacity index

Then, correct the indoor unit capacity according to the piping length.
If the corrected capacity is smaller than the load, the size of indoor unit has to be increased. Repeat the same selection procedure.

1-4 Selection example based on cooling load

1 Given

- Design condition

Cooling: indoor $20^{\circ} \mathrm{CWB}$, outdoor $33^{\circ} \mathrm{CDB}$

- Cooling load

Room	A	B	C	D	E	F	G	H
Load (kM	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2

- Power supply: 3-phase $380 \mathrm{~V} / 50 \mathrm{~Hz}$

2 Indoor unit selection
Enter indoor unit capacity table at:
20 CWB indoor temperature
33 CDB outdoor air temperature.
Selection results are as follows:

Room	A	B	C	D	E	F	G	H
Load (kW	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	25	25	25	40	40	40	40	
Capacity	3.0	3.0	3.0	4.8	4.8	4.8	4.8	

3 Outdoor unit selection

- Assume that the indoor and outdoor unit combination is as follows.

Outdoor unit: RXYQ10M
Indoor unit: FXCQ25M7 x 3, FXCQ40M7 x 5

- Indoor unit combination total capacity index $25 \times 3+40 \times 5=275(110 \%)$

1 Selection procedure VRVII system based on cooling load

1-4 Selection example based on cooling load

4 Actual performance data (50 Hz)

- Outdoor unit cooling capacity: 30.5kW (RXYQ10M, 110%)
- Individual capacity

Capacity of FXYCP25K $=30.5 \times \frac{25}{275}=2.77 \mathrm{~kW}$
Capacity of FXYCP40K7 $=30.5 \times \frac{40}{275}=4.44 \mathrm{~kW}$
Actual combination capacity

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	25	25	25	40	40	40	40	40
Capacity	2.77	2.77	2.77	4.44	4.44	4.44	4.44	4.44

The unit size for room A has to be increased from 25 to 32 because the capacity is less than the load. For new combination, actual capacity is calculated as follows.

- Indoor unit combination total capacity index $(25 \times 2)+31.25+(40 \times 5)=281.25(112.5 \%)$
- Outdoor unit cooling capacity:
$27,610 \mathrm{kcal} / \mathrm{h}$ (direct interpolation between 110% and 120% in the table)
- Individual capacity

Capacity of FXCQ25M	$=30.0 \times \frac{25}{281.25}=2.7 \mathrm{~kW}$
Capacity of FXCQ32M	$=30.0 \times \frac{32}{281.25}=3.4 \mathrm{~kW}$
Capacity of FXCQ40M	$=30.0 \times \frac{40}{281.25}=4.3 \mathrm{~kW}$

Actual capacity of new combination

Room	A	B	C	D	E	F	G	
Load (KW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	32	25	25	40	40	40	40	
Capacity	3.4	2.7	2.7	4.3	4.3	4.3	4.3	4.3

Then, the capacities have to be corrected for actual piping length according to the location of indoor and outdoor units and the distance between them.

2 Capacity correction ratio

2-1 RX(Y)Q5M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity = cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	gas	liquid
RXM)05M	019.1	not increased

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

Rate of change (object piping)	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	-

Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m}=120 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.78 heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	gas	liquid
RXMM55M	$\varnothing 15.9$	09.5

2 Capacity correction ratio

2-2 RX(Y)Q8M, RXYQ22M

- Rate of change in cooling capacity

- Rate of change in heating capacity

3D040059A

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table x each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	gas	liquid
RXX)Q8M	$\varnothing 22.2$	$\varnothing 12.7$
RXYQ22M	$\varnothing 31.8$	$\varnothing 19.1$

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

Rate of change (object piping)	Correction factor	
	Standard size	Size increase
Heating (liquid pipe)	1.0	0.5

Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.86
heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0

EXPLANATION OF SYMBOLS
H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	gas	liquid
RX(M)Q8M	$\varnothing 19.1$	09.5
RXYQ22M	$\varnothing 28.6$	$\varnothing 15.9$

2 Capacity correction ratio

2-3 RX(Y)Q10M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit)
cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change
When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is:
cooling / heating capacity $=$ cooling / heating capacity of each unit \times capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased.
Diameter of above case

Model	gas	liquid
RXMOQ10M	$\oplus 25.4$	$\oplus 12.7$

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

Rate or change (object piping)	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.87
heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.90

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	gas	liquid
RX(Y)Q10M	$\varnothing 22.2$	$\varnothing 9.5$

2 Capacity correction ratio

2-4 RXYQ12,14,24,36M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity $=\underline{\text { cooling / heating capacity obtained from performance characteristics table } x \text { each capacity rate of change }}$ When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased.
Diameter of above case

Model	gas	liquid
RXYQ12,14M	Not Increased	015.9
RXYQ24M		019.1
RXYQ36M		022.2

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
$\underline{\text { Overall equivalent length }}=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

Rate or change (object piping)	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	-
Heating (liquid pipe)	1.0	0.5

Example

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.88
heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0
EXPLANATION OF SYMBOLS
H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	gas	liquid
RXYQ12,14M	$\varnothing 28.6$	$\varnothing 12.7$
RXYQ24M	$\varnothing 34.9$	$\varnothing 15.9$
RXYQ36M	$\varnothing 41.3$	$\varnothing 19.1$

2 Capacity correction ratio

2-5 RXYQ16M

- Rate of change in cooling capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit)
cooling / heating capacity = cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change
When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is:
cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	gas	liquid
RXYQ16M	$\varnothing 31.8$	015.9

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

Rate or change (object piping)	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.88
heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of pipes

Model	gas	liquid
RXYQ16M	$\varnothing 28.6$	$\varnothing 12.7$

2 Capacity correction ratio

2-6 RXYQ18,26,28,30,38,40,42,44M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity = cooling / heating capacity obtained from performance characteristics table x each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is:
cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased except for the gas pipe of $R X(Y) Q 38,40,42,44 M$.
Diameter of above case

Model	gas	liquid
RXYQ18M	$\varnothing 31.8$	$\varnothing 19.1$
RXYQ26,28,30M	$\varnothing 38.1$	$\varnothing 22.2$
RXYQ38,40,42,44M	Not Increased	$\varnothing 22.2$

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

Rate or change (object piping)	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{1.0}+\underline{40 \mathrm{~m}}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.83
heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	gas	liquid
RXQ18M	$\varnothing 28.6$	$\varnothing 15.9$
RXYQ26,28,30M	$\varnothing 34.9$	$\varnothing 19.1$
RXYQ40,42,44M	$\varnothing 41.3$	$\varnothing 19.1$

2 Capacity correction ratio

2-7 RXYQ20,32,34,46M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table x each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased except for the gas pipe of $\mathrm{RX}(\mathrm{Y}) \mathrm{Q} 46 \mathrm{M}$.
Diameter of above case

Model	gas	liquid
RXYQ20M	$\varnothing 31.8$	$\varnothing 19.1$
RXYQ32,34M	$\varnothing 38.1$	$\varnothing 22.2$
RXYQ46M	Not Increased	$\varnothing 22.2$

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

Rate or change (object piping)	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

Example

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.82
heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 1.0

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor
Diameter of gas pipes

Model	gas	liquid
RXYQ18M	$\varnothing 28.6$	$\varnothing 15.9$
RXYQ26,28,30M	$\varnothing 34.9$	$\varnothing 19.1$
RXYQ40,42,44M	$\varnothing 41.3$	$\varnothing 19.1$

2 Capacity correction ratio

2-8 RXYQ48M

- Rate of change in cooling capacity

2

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	liquid	gas
RXYQ48M	$\emptyset 22.2$	not increased

5 Read cooling / heating capacity rate of change in the above figures based on the following equivalent length.
Overall equivalent length $=$ Equivalent length to main pipe \times Correction factor + Equivalent length after branching
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

Rate or change (object piping)	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	-
Heating (liquid pipe)	1.0	0.5

Example

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity in cooling capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.82
heating capacity when $\mathrm{Hp}=0 \mathrm{~m}$ is thus approximately 0.97

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of pipes

Model	gas	liquid
RXYQ48M	$\varnothing 41.3$	$\varnothing 19.1$

2 Capacity correction ratio

2-9 REYQ8,22M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit)
cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit \times capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased.
Diameter of above case

Model	Liquid
REYQ8M	012.7
REYQ22M	$\varnothing 19.1$

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching Example

In the above case (Heating)
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 1.0
6 In the combination which does not include cooling only indoor unit, calculate the equivalent length pipe by the following when you calculate cooling capacity.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example

In the above case (Cooling)
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.86

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of pipes

Model	liquid
REYQ8M	$\varnothing 9.5$
REYQ22M	$\varnothing 15.9$

2 Capacity correction ratio

2-10 REYQ10M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	liquid
REYQ10M	$\emptyset 12.7$

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times \underline{0.5}+$ Equivalent length after branching
Example

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.91
6 In the combination which does not include cooling only indoor unit, calculate the equivalent length pipe by the following when you calculate cooling capacity.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe } \times 0.5+\text { Equivalent length after branching }}$
Example

In the above case (Cooling)
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.88

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	liquid
REYQ10M	09.5

2 Capacity correction ratio

2-11 REYQ12,14,24,36M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity = cooling / heating capacity obtained from performance characteristics table x each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	liquid
REYQ12,14M	$\varnothing 15.9$
REYQ24M	$\varnothing 19.1$
REYQ36M	$\varnothing 22.2$

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe } \times 0.5+\text { Equivalent length after branching }}$ Example

In the above case (Heating)
$\underline{\text { Overall equivalent length }}=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 1.0
6 In the combination which does not include cooling only indoor unit, calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+$ Equivalent length after branching Example

In the above case (Cooling)
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.92

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	liquid
REYQ12,14M	$\varnothing 12.7$
REYQ24M	$\varnothing 15.9$
REYQ36M	$\varnothing 19.1$

2 Capacity correction ratio

2-12 REYQ16M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table x each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main liquid pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	liquid
REYQ16M	$\emptyset 15.9$

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe } \times 0.5+\text { Equivalent length after branching }}$
Example

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 1.0
6 In the combination which does not include cooling only indoor unit, calculate the equivalent length pipe by the following when you calculate cooling capacity.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe } \times \underline{0.5}+\text { Equivalent length after branching }}$
Example

In the above case (Cooling)
$\underline{\text { Overall equivalent length }}=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.88

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	liquid
REYQ16M	$\varnothing 12.7$

2 Capacity correction ratio

2-13 REYQ18,26,28,30,38,40,42,44M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit)
cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change
When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is:
cooling / heating capacity $=$ cooling / heating capacity of each unit \times capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased.
Diameter of above case

Model	liquid
REYQ18M	$\varnothing 19.1$
REYQ26,28,30,38,40,42,44M	$\varnothing 22.2$

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times \underline{0.5}+\underline{\text { Equivalent length after branching }}$ Example

In the above case (Heating)
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 1.0
6 In the combination which does not include cooling only indoor unit, calculate the equivalent length pipe by the following when you calculate cooling capacity.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example

In the above case (Cooling)
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.88

- EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of pipes

Model	liquid
REYQ18M	015.9
REYQ26,28,30,38,40,42,44M	$\varnothing 19.1$

2 Capacity correction ratio

2-14 REYQ20,32,34,46M

- Rate of change in cooling capacity

- Rate of change in heating capacity

| notes

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit) cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table x each capacity rate of change When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is: cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased. Diameter of above case

Model	liquid
REYQ20M	$\propto 19.1$
REYQ32,34,46M	$\varnothing 22.2$

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$ Example

In the above case (Heating)
$\underline{\text { Overall equivalent length }}=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 1.0
6 In the combination which does not include cooling only indoor unit, calculate the equivalent length pipe by the following when you calculate cooling capacity.
Overall equivalent length $=$ Equivalent length to main pipe $\times \underline{0.5}+$ Equivalent length after branching
Example

In the above case (Cooling)
$\underline{\text { Overall equivalent length }}=\underline{80 \mathrm{~m}} \times \underline{0.5}+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.87

EXPLANATION OF SYMBOLS

H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor

Diameter of gas pipes

Model	liquid
REYQ20M	$\varnothing 15.9$
REYQ32,34,46M	$\varnothing 19.1$

2 Capacity correction ratio

2-15 REYQ48M

- Rate of change in cooling capacity

- Rate of change in heating capacity

NOTES

1 These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2 With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3 Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit)
cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table \times each capacity rate of change
When piping length differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is:
cooling / heating capacity = cooling / heating capacity of each unit x capacity rate of change for each piping length
4 When overall equivalent pipe length is 90 m or more, the diameter of the main gas and liquid pipes (outdoor unit-branch sections) must be increased except for the gas pipe of $R X(Y) Q 46 M$.
Diameter of above case

Model	liquid
REYQ48M	022.2

5 When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times \underline{0.5}+$ Equivalent length after branching
Example

In the above case (Heating)
$\underline{\text { Overall equivalent length }}=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.97
6 In the combination which does not include cooling only indoor unit, calculate the equivalent length pipe by the following when you calculate cooling capacity.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example

In the above case (Cooling)
Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H}_{\mathrm{p}}=0 \mathrm{~m}$ is thus approximately 0.87

EXPLANATION OF SYMBOLS
H_{p} : Level difference (m) between indoor and outdoor units with indoor unit in inferior position
H_{M} : Level difference (m) between indoor and outdoor units with indoor unit in superior position
L : Equivalent pipe length (m)
α : Capacity correction factor
Diameter of gas pipes

Model	liquid
REYQ48M	$\varnothing 19.1$

3 Integrated heating capacity coefficient

1 The tables do not take account of the reduction in capacity when frost has accumulated or while the defrosting operation is in progress. The capacity values which take these factors into account, in other words the integrated heating capacity values, can be calculated as follows:

Formula: Integrated heating capacity = A
Value given in table of capacity characteristics $=B$
Integrating correction factor for frost accumulation (kW) $=\mathrm{C}$
$A=B \times C$
2 Correction factor for finding integrated heating capacity

Inet port temperature of heat exchanger $\left({ }^{\circ} \mathrm{C} / \mathrm{RH} \mathrm{H5} \mathrm{\%}\right)$	-7	-5	-3	0	3	5	7
Integrating correction factor for frost accumulation	0.96	0.93	0.87	0.81	0.83	0.89	1.0

NOTE

- The figure shows that the integrated heating capacity expresses the integrated heating capacity for a single cycle (from defrost operation to defrost operation) in terms of time.

3 Please note that when there is an accumulation of snow against the outside surface of the outdoor unit heat exchanger, there will always be a temporary reduction in capacity although this will, of course, vary in degree in accordance with a number of other factors such as the outdoor temperature (CDB), relative humidity (RH) and the amount of frosting which occurs.

4 Refnet pipe system

4－1 Refnet joints

4－1－1 VRVII heat pump

	Liquid side junction	Suction gas side junction	
			2×8 （10）
			$\begin{array}{r} (3) \\ 2 \times(4) \end{array}$
			$\begin{aligned} & \text { (3) } \\ & \text { (4) } \\ & \text { (2) } \\ & \text { (5) } \end{aligned}$
$\begin{aligned} & \text { 华 } \\ & \text { 刘 } \\ & \text { 㸓 } \end{aligned}$			（5）（2） （6） （10） $2 \times(14)$

4 Refnet pipe system

4-1 Refnet joints

4-1-2 VRVII heat recovery

	Liquid side junction	Discharge gas side junction	Suction gas side junction
			(10)
		(8)(2)	

4 Refnet pipe system

4－2 Refnet headers

4－2－1 VRVII heat pump

	Liquid side header	Suction gas side header	
ㄷ⿳亠二口丿 文 푼			$6 \times($ （17） （18）
			$\begin{aligned} & 6 \times(C \\ & 2 \times(18 \end{aligned}$
			$\begin{aligned} & 6 \times(\square) \\ & 4 \times(10) \end{aligned}$

4－2－2 VRVII heat recovery

	Liquid side header	Discharge gas side header	Suction gas side header
	(1)		
			$5 \times(10)$ $6 \times \text { © }$

4 Refnet pipe system

4-3 Reducers, Expanders

4-4 Closed pipes

(A)

4 Refnet pipe system

4-5 Outdoor unit multi piping connection kit

4-5-1 VRVII heat pump

	Suction gas side junction	Liquid side juntion	Reduces/ / Expanders			Joint for ol pipe
			For suction gas pipe	For discharge gas pipe	For liquid pipe	
$\begin{aligned} & \text { M } \\ & \sum_{\text {N }}^{y} \\ & \text { 亭 } \end{aligned}$						
			(3x)			团

4 Refnet pipe system

4-5 Outdoor unit multi piping connection kit

4-5-2 VRVII heat recovery

	Suction ass side juntion	Dischare eas side jejurion	Liquid Sde jinction	Redices / Exandes			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Jint for oil } \\ \text { pipe } \end{array} \\ \hline \end{array}$
				For sction gas pipe	For distage ofa pipe	For liquid pipe	
$\begin{aligned} & \text { 䯧 } \\ & \text { 窎 } \end{aligned}$							
				$(3 x)$			

4 Refnet pipe system

4-6 Example of Refnet piping layouts

5 REFNET pipe selection

5-1 RX(Y)Q5-10M, RXYQ12-48M

5 REFNET pipe selection

5-2 REYQ8~48M

5-3 Piping thickness

Piping diameter	Material	Minimum thickness [mm]
$\varnothing 6.4$	0	0.8
$\varnothing 9.5$	0	0.8
$\varnothing 12.7$	0	0.8
$\varnothing 15.9$	0	0.99
$\varnothing 19.1$	$1 / 2 \mathrm{H}$	0.8
$\varnothing 22.2$	$1 / 2 \mathrm{H}$	0.8
$\varnothing 28.6$	$1 / 2 \mathrm{H}$	0.99
$\varnothing 34.9$	$1 / 2 \mathrm{H}$	1.21
$\varnothing 41.3$	$1 / 2 \mathrm{H}$	1.43

:O : annealed
$1 / 2 \mathrm{H}$: half-hard
For half hard pipes the maximum allowed tensile stress is $61 \mathrm{~N} / \mathrm{mm}^{2}$. For this reason the 0.2% proof strength of the half hard pipe shall be minimum $61 \mathrm{~N} / \mathrm{mm}^{2}$.
The bending radius is more than or equal to 3 times the diameter of the pipe.

䉪墇III
 Systems

ISO14001 assures an effective environmental management system in order to help protect human h health•and the environment from the potential impact of our activities, products and services and to assist in maintaining and improving the quality of the environment.

Daikin Europe N.V. is approved by LRQA for its Quality Management System in accordance with the ISO9001 standard. ISO9001 pertains to quality assurance regarding design, development, manufacturing as well as to services
related to the product. related to the product

Daikin units comply with the European regulations that guarantee the safety of the product.

VRV products are not within the scope of the Eurovent certification programme.

Daikin equipment is designed for comfort applications. For use in other applications, please contact your local Daikin
representative.

