VRV IV S-series heat pump

The most compact VRV

Most compact unit on the market 823mm high & 88kg

Indoor units VRV type indoor units Residential type indoor units (such as Daikin Emura)

Air curtain
Biddle Air curtain for VRV (CYV)

Ventilation
Heat Reclaim ventilation
(VAM/VKM) AHU
connection kit

RXYSQ4, 5, 6TV1/TY1

Variable
Refrigerant
Temperature

VRV IV standards:

Variable refrigerant temperature

Customize your VRV for best seasonal efficiency & comfort

VRV configurator

Software for simplified commissioning, configuration and customisation

- > Refrigerant containment check
- > Night quiet mode
- > Low noise function
- > Connectable to stylish indoor units (Daikin Emura, Nexura)
- > Full inverter compressors
- > Gas cooled PCB (not available on RXYSQ4,5,6,8TY1)
- > Reluctance brushless DC compressor
- > Sine wave DC inverter
- > DC fan motor
- > E-pass heat exchanger
- > I demand function
- > Manual demand function

Widest range of front blow units on the market

Lowest height on the market

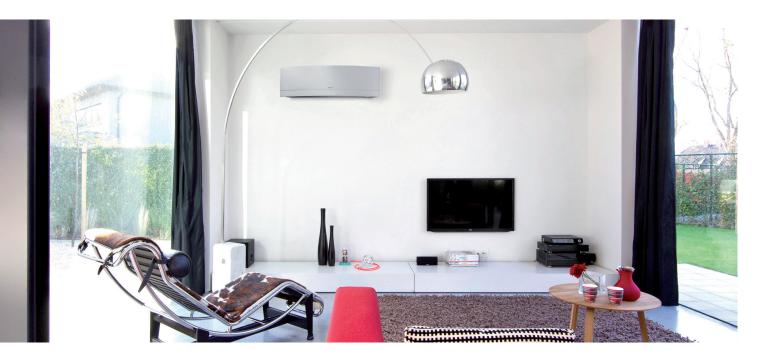
Ideal for roof installations

> The low height mini VRV can be hidden in many places where a twin fan unit cannot due to its low height.

Ideal to install below a window on a Balcony

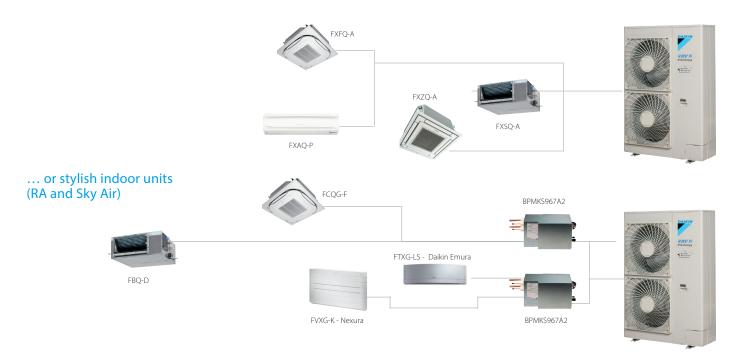
Daikin VRV IV S-series compact can be installed discretely on a balcony thanks to it's compact dimensions, offering you air conditioning while being almost unnoticeable.


Unnoticeable for parapet installation



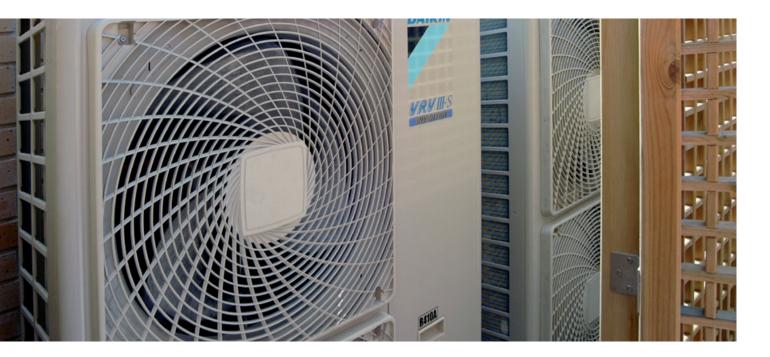
Low height make the unit invisible from inside and unnoticeable from the outside

Space saving design


The VRV S-series is slimmer and more compact, resulting in significant savings in installation space.

Wide range of indoor units

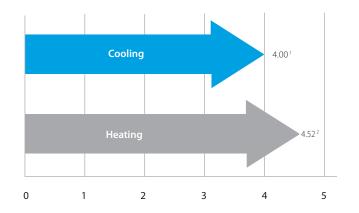
Connect VRV units...


Connectable stylish indoor units

	15 CLASS	20 CLASS	25 CLASS	35 CLASS	42 CLASS	50 CLASS	60 CLASS	71 CLASS
Round flow cassette				FCQG-F		FCQG-F	FCQG-F	
Fully flat cassette			FFQ-C	FFQ-C		FFQ-C	FFQ-C	
Small concealed ceiling unit			FDBQ-B	FDBQ-B		FDBQ-B	FDBQ-B	
Slim concealed ceiling unit			FDXS-F(9)	FDXS-F(9)		FDXS-F(9)	FDXS-F(9)	
Concealed ceiling unit with inverter driven fan			FBQ-D	FBQ-D		FBQ-D	FBQ-D	
Daikin Emura – Wall mounted unit		FTXG-L	FTXG-L	FTXG-L		FTXG-L		
Wall mounted unit	CTXS-K	FTXS-K	FTXS-K	CTXS-K FTXS-K	FTXS-K	FTXS-K	FTXS-G	FTXS-G
Ceiling suspended unit				FHQ-C		FHQ-C	FHQ-C	
Nexura – Floor standing unit			FVXG-K	FVXG-K		FVXG-K		
Floor standing unit			FVXS-F	FVXS-F		FVXS-F		
Flexi type unit			FLXS-B(9)	FLXS-B(9)		FLXS-B(9)	FLXS-B(9)	

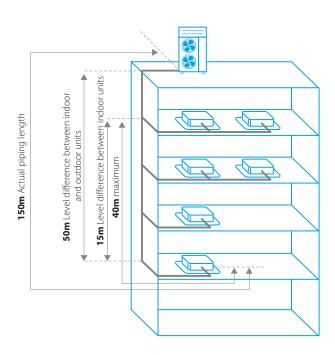
For more info about Daikins stylish indoor units, please check our indoor unit-portfolio

^{*} VRV indoor units and stylish indoor units cannot be combined.


^{*} To connect stylish indoor units a BPMKS unit is needed

High COP values

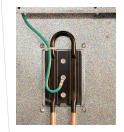
A major feature of VRV IV S-series is its exceptional energy efficiency. The system achieves high COPs during both cooling and heating operation by the use of refined components and functions.


- ¹ Nominal cooling capacities are based on: indoor temperature: 27°CDB, 19°CWB, outdoor temperature: 35°C, equivalent refrigerant piping: 5m, level difference: 0m.
- Nominal heating capacities are based on: indoor temperature: 20°CDB, outdoor temperature: 7°CDB, 6°CWB, equivalent refrigerant piping: 5m, level difference: 0m

Flexible piping design

	VRV indoors connected	Stylish indoors connected
Total piping length	300m	250m
Longest length actual (Equivalent)	150m (175m)	
Minimum length between outdoor unit and first branch	-	5m
Minimum piping length between BP and indoor unit	-	2m
Maximum piping length between BP and indoor unit	-	15m
Longest length after first branch	40m	40m
Level difference between indoor and outdoor units	50m (40m ¹)	30m
Level difference between indoor units	15m	15m

¹ Outdoor unit in lowest position



VRV IV S-series

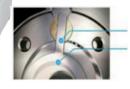
technologies

Super aero grille

The spiral shaped ribs are aligned with the direction of discharge flow in order to minimise turbulence and reduce noise.

Refrigerantcooled PCB

- Reliable cooling because it is not influenced by ambient air temperature
- Smaller switchbox for smoother air flow through the heat exchanger increasing heat exchange efficiency with 5%


Improved fan blades

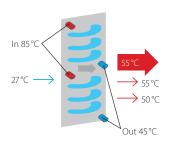
Air streams are smoothed around V-cut and reduces air flow loss

Vane fixed to rotor Rotor

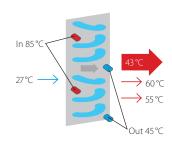
Compressor

Swing type > no oil separator Vane & rotor are unified resulting in:

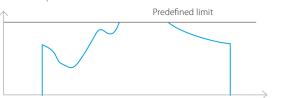
- > Reduced noise level
- > Longer compressor life
- Higher efficiency thanks to the absence of internal refrigerant leakage between high and low pressure side


E-Pass heat exchanger

Optimising the heat exchanger's path layout prevents heat being transferred from the overheated gas section to the sub-cooled liquid section which is a more efficient way to use the heat exchanger.


I-demand function

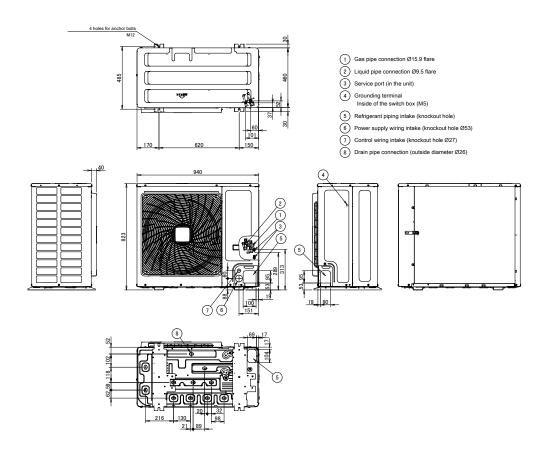
Limit maximum power consumption.
The newly introduced current sensor minimizes the difference between the actual power consumption and the predefined power consumption.


Standard heat exchanger

e-Pass heat exchanger

Power consumption

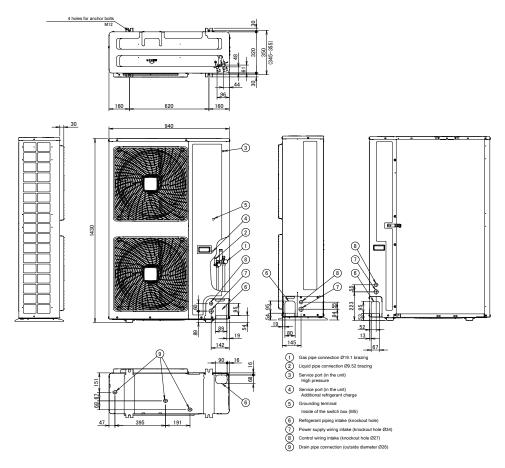
VRV IV S-series heat pump


Space saving solution without compromising on efficiency

- > Space saving trunk design for flexible installation
- > Covers all thermal needs of a building via a single point of contact: accurate temperature control, ventilation, air handling units and Biddle air curtains
- > Wide range of indoor units: either connect VRV or stylish indoor units such as Daikin Emura, Nexura ...
- > Incorporates VRV IV standards & technologies: Variable Refrigerant Temperature and full inverter compressors
- > 3 steps in night quiet mode
- > Possibility to limit peak power consumption between 30 and 80%, for example during periods with high power demand
- > Contains all standard VRV features

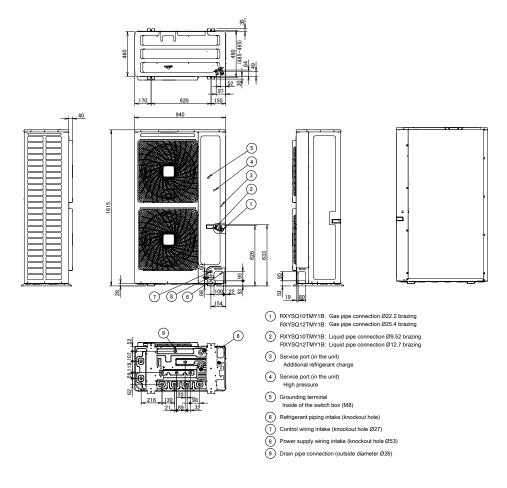
Outdoor unit		R	XYSQ-TV1/R	XYSQ-TY1	4TV1	5TV1	6TV1	4TY1	5TY1	6TY1	8TY1	10TY1	12TY1
Capacity range				HP	4	5	6	4	5	6	8	10	12
Cooling capacity	Nom.			kW	12.1	14.0	15.5	12.1	14.0	15.5	22.4	28.0	33.5
Heating capacity	Nom.			kW	12.1	14.0	15.5	12.1	14.0	15.5	22.4	28.0	33.5
	Max.			kW	14.2	16.0	18.0	14.2	16.0	18.0	25.0	31.5	37.5
Power input - 50Hz	Cooling	Nom.		kW	3.03	3.73	4.56	3.03	3.73	4.56	6.12	8.24	10.15
	Heating	Nom.		kW	2.68	3.27	3.97	2.68	3.27	3.97	5.20	6.60	8.19
		Max.		kW	3.43	4.09	5.25	3.43	4.09	5.25	6.22	8.33	10.25
EER				kW	4.00	3.75	3.40	4.00	3.75	3.40	3.66	3.40	3.30
COP at nominal capa	city			kW	4.52	4.28	3.90	4.52	4.28	3.90	4.31	4.24	4.09
COP at maximum cap	oacity			kW	4.14	3.91	3.43	4.14	3.91	3.43	4.02	3.78	3.66
Maximum number of	f connectable indoo	r units							64 (1)				
Indoor index	Min.				50	62.5	70	50	62.5	70	100	125	150
connection	Nom.								-				
	Max.				130	162.5	182	130	162.5	182	260	325	390
Dimensions	Unit	HeightxWid	dthxDepth	mm			1,345x9	900x320			1,430x940x320	1,615x9	940x460
Weight	Unit			kg			10	04			144	175	180
Fan	Air flow rate	Cooling	Nom.	m³/min			10	06			140	18	82
Sound power level	Cooling	Nom.		dBA	68	69	70	68	69	70	73	74	76
Sound pressure level	Cooling	Nom.		dBA	50	5	51	50	5	1	5	5	57
Operation range	Cooling	Min.~Max.		°CDB			-5~	-5~46 -5~52					
	Heating	Min.~Max.		°CWB		-20~15.5							
Refrigerant	Туре				R-410A								
	Charge			kg	3.6				4.5	7	8		
				TCO₂eq			7	.5			9.4	14.6	16.7
	GWP								2,087.5				
Piping connections	Liquid	OD		mm				9.	52				12.7
	Gas	OD		mm	15	5.9	19.1	1:	5.9	1	9.1	22.2	25.4
	Total piping length	System	Actual	m					-				
Power supply	Phase/Frequency	/Voltage		Hz/V	1	N~/50/220-2	40			3N~/50	/380-415		
Current - 50Hz	Maximum fuse ar			А		32			16		2	5	32
(1) Actual number of units of	depends on the indoor un	it type (VRV DX in	door, RA DX indo	or, etc.) and the	connection rati	o restriction for th	ne system (being;	50% ≤ CR ≤130%	i).				

RXYCSQ-TV1



3D098107

RXYSQ-TV1



RXYSQ-TY1

3D098108

RXYSQ10-12TY1

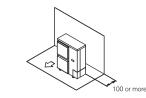
3D098109

RXYSQ-TV1 / / RXYSQ4-6TY1

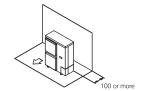
Required installation space

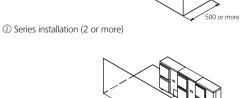
The unit of the values is mm.

(A) When there are obstacles on suction sides.


• No obstacle above

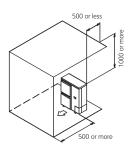
① Stand-alone installation


• Obstacle on the suction side only

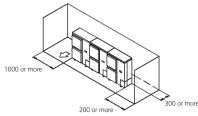

• Obstacle on both sides

②Series installation (2 or more) • Obstacle on both sides

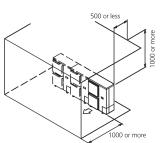
100 or more


• Obstacle above, too

• No obstacle above

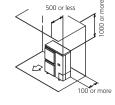

① Stand-alone installation

(B) When there are obstacles on discharge sides.


① Stand-alone installation

1000 or more

② Series installation (2 or more)

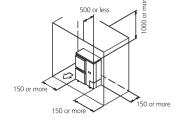

• Obstacle above, too.

sides

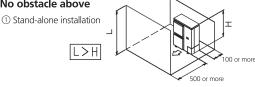
① Stand-alone installation

• Obstacle on the suction side, too

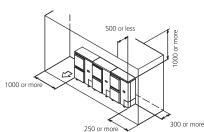
• Obstacle on the suction side and both

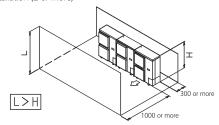


When there are obstacles on both suction and discharge sides.:


Pattern 1

When the obstacles on the discharge side is higher


(There is no height limit for obstructions on the intake side.)


• No obstacle above

② Series installation (2 or more)Obstacle on the suction side and both sides

② Series installation (2 or more)

3D045696D

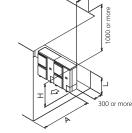
RXYSQ-TV1 / / RXYSQ4-6TY1

• Obstacle above, too

① Stand-alone installation

The relations between H. A and L are as follows.

	L	A		
I≤H	0 < L ≦ 1/2 H	750		
L an	1/2 H < L ≦ H	1000		
H <l< th=""><th colspan="4">Set the stand as : L ≦ H</th></l<>	Set the stand as : L ≦ H			


Close the bottom of the installation frame to prevent the discharged air from being bypassed.

② Series installation (2 or more)

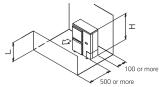
The relations between H, A and L are as follows.

	L	A		
I≤H	0 < L ≦ 1/2 H	1000		
L = n	1/2 H < L ≦ H	1250		
H <l< th=""><th colspan="4">Set the stand as : L \leq H</th></l<>	Set the stand as : L \leq H			

Close the bottom of the installation frame to prevent the discharged air from being bypassed. Only two units can be installed for this

500 or less

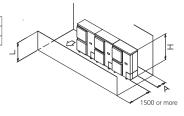
500 or les


Pattern 2

When the obstacle on the discharge side is lower

than the unit: (There is no height limit for obstructions on the intake side.)

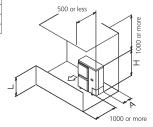
No obstacle above



② Series installation (2 or more)

The relations between H, A

and Laic as ic	movvs.
l	A
0 < L ≦ 1/2 H	250
1/2 H < L ≦ H	300


• Obstacle above, too

① Stand-alone installation

The relations between H, A and L are as follows

us 101101115.					
	L	A			
L≦H	0 < L ≦ 1/2 H	100			
	1/2 H < L ≦ H	200			
H <l< th=""><th>Set the stand</th><th>las:L≦ H</th></l<>	Set the stand	las:L≦ H			

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

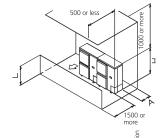
2 Series installation

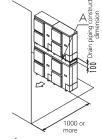
The relations between H, A and L are as follows.

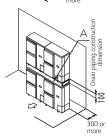
	L	A		
L≦H	0 < L ≦ 1/2 H	250		
	1/2 H < L ≦ H	300		
H <l< th=""><th colspan="4">Set the stand as : L ≦ H</th></l<>	Set the stand as : L ≦ H			

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

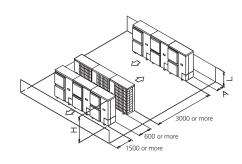
Only two units can be installed for this series.


(D) Double-decker installation


① Obstacle on the discharge side. Close the gap A (the gap between the upper and lower outdoor units) to prevent the discharged air from being bypassed.


Do not stack more than two unit.

② Obstacle on the suction side. Close the gap A (the gap between the upper and lower outdoor units) to prevent the discharged air from being bypassed.
Do not stack more than two unit.


(E) Multiple rows of series installation (on the rooftop, etc.)

2 Rows of series installation (2 or more)

The relations between H, A and L are as follows.

	ciacionis accircenti,	rana Lare as rono		
	L	A		
L≦H	0 < L ≦ 1/2 H	250		
L = n	1/2 H < L ≦ H	300		
H < I	Can not be installed			

1000 or more

3D045696D

RXYSQ-8TY1

Required installation space

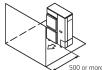
The unit of the values is mm.

(A) When there are obstacles on suction sides.

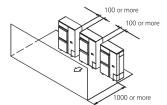
- No obstacle above
 - ① Stand-alone installation
 - Obstacle on the suction side only
 - Obstacle on both sides

Obstacle on both sides

• Obstacle above, too.

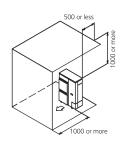

- ① Stand-alone installation
 - Obstacle on the suction side, too

Obstacle on the suction side and both

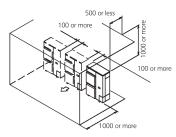

(B) When there are obstacles on discharge sides.

• No obstacle above

① Stand-alone installation



② Series installation (2 or more) (Note)



Obstacle above, too

① Stand-alone installation

② Series installation (2 or more) (Note)

(C) When there are obstacles on both suction and discharge sides.:

300 or more

100 or more

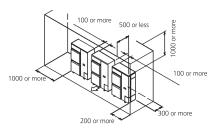
200 or n

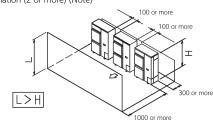
500 or less

500 or less

1000 or mo

When the obstacles on the discharge side is higher than the unit.


(There is no height limit for obstructions on the intake side.)


① Stand-alone installation

- ② Series installation (2 or more) (Note)
 - Obstacle on the suction side and both sides

② Series installation (2 or more) (Note)

3D068442K

RXYSQ-8TY1

• Obstacle above, too

① Stand-alone installation

The relations between H, A and L are as follows.

	L	A		
L≤H	0 < L ≦ 1/2 H	1000		
r ≥ n	1/2 H < L ≦ H	1250		
H <l< th=""><th colspan="4">Set the stand as : L ≦ H</th></l<>	Set the stand as : L ≦ H			

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

② Series installation (2 or more) (Note)

The relations between H, A and L are as follows.

	L	A		
L≤H	0 < L ≦ 1/2 H	1000		
L = n	1/2 H < L ≦ H	1250		
H <l< th=""><th colspan="4">Set the stand as : L ≦ H</th></l<>	Set the stand as : L ≦ H			

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

Only two units can be installed for this series.

When the obstacle on the discharge side is lower than the unit:

(There is no height limit for obstructions on the intake side.)

No obstacle above

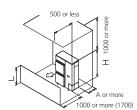
1 Stand-alone installationL ≦ H

② Series installation (2 or more) (Note)

The relations between H, A and L are as follows.

Ĺ	A
0 < L ≦ 1/2 H	250
1/2 H < L ≦ H	300

• Obstacle above, too


① Stand-alone installation

The relations between H, A and L are as follows.

as ronovvs.		
	l	A
L≦H	0 < L ≦ 1/2 H	100
	1/2 H < L ≦ H	200
H < I	Set the stand as · L ≤ H	

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

If the distance exceeds the figure in te (), then there's no need to set the stand.

500 or less

500 or less

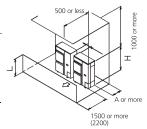
A or more

1000 or more

100 or more

100 or more

Note: When installing the units in a line, have to leave the distance over 100mm between the two units.

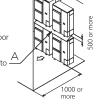

② Series installation (Note)

The relations between H, A and L are as follows.

	L	A
I≤H	0 < L ≦ 1/2 H	250
L ⊇ n	1/2 H < L ≦ H	300
H <l< th=""><th>Set the stand</th><th>as:L≦ H</th></l<>	Set the stand	as:L≦ H

Close the bottom of the installation frame to prevent the discharged air from being bypassed. Only two units can be installed for this series.

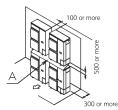
If the distance exceeds the figure in te (), then there's no need to set the stand.


(D) Double-decker installation

 Obstacle on the discharge side. (Note) Close the gap A (the gap between the upper and lower outdoor units) to prevent the discharged air from being bypassed.

Do not stack more than two unit.

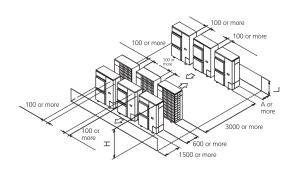
Set the board (field supply) as the detail A between two units to prevent the drainage from freezing.


Leave enough space between the layer one and the board.

100 or more

 Obstacle on the suction side. (Note)
 Close the gap A (the gap between the upper and lower outdoor units) to prevent the discharged air from being bypassed.
Do not stack more than two unit.

Set the board (field supply) as the detail A between two units to prevent the drainage from freezing. Leave enough space between the layer one and the


(E) Multiple rows of series installation (on the rooftop, etc.)

② Rows of series installation (2 or more)

The relations between H, A and L are as follows.

	l	A
L≦H	0 < L ≦ 1/2 H	250
	1/2 H < L ≦ H	300
H <l< th=""><th colspan="2">Can not be installed</th></l<>	Can not be installed	

3D068442K

RXYSQ10-12TY1

Required installation space

The unit of the values is mm.

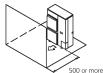
(A) When there are obstacles on suction sides.

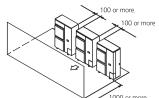
• No obstacle above

① Stand-alone installation

• Obstacle on the suction side only

• Obstacle on both sides

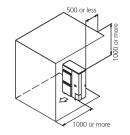

• Obstacle on both sides


(B) When there are obstacles on discharge sides.

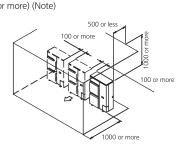
• No obstacle above

① Stand-alone installation

② Series installation (2 or more) (Note)


• Obstacle above, too ① Stand-alone installation

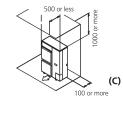
100 or more


100 or more

300 or more

100 or more

② Series installation (2 or more) (Note)

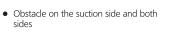


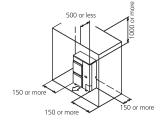
• Obstacle above, too.

sides

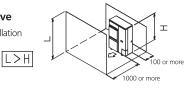
① Stand-alone installation

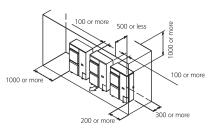
• Obstacle on the suction side, too


1000 or more

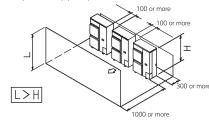

When there are obstacles on both suction and discharge sides.:

When the obstacles on the discharge side is higher than the unit.


(There is no height limit for obstructions on the intake side.)



• No obstacle above


① Stand-alone installation

② Series installation (2 or more) (Note)Obstacle on the suction side and both sides

② Series installation (2 or more) (Note)

3D083122E

RXYSQ10-12TY1

• Obstacle above, too

① Stand-alone installation

The relations between H, A and L are as follows.

		L	А
	L≦H	0 < L ≦ 1/2 H	1000
L≧H	1/2 H < L ≦ H	1250	
	H <l< th=""><th colspan="2">Set the stand as : $L \le H$</th></l<>	Set the stand as : $L \le H$	

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

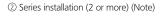
② Series installation (2 or more) (Note)

The relations between H, A and L are as follows.

	L	A
I≤H	0 < L ≦ 1/2 H	1000
L an	1/2 H < L ≦ H	1250
H < L	Set the stand as : L ≦ H	

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

Only two units can be installed for this



When the obstacle on the discharge side is lower than the unit:

(There is no height limit for obstructions on the intake side.)

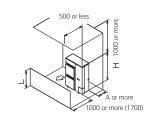
No obstacle above

① Stand-alone installation $\mathsf{L} \leqq \mathsf{H}$

The relations between H, A and L are as follows

and E are as ronorrs.	
L	A
0 < L ≦ 1/2 H	250
1/2 H < L ≦ H	300

• Obstacle above, too


① Stand-alone installation

The relations between H, A and L are as follows

	l	A
L≦H	0 < L ≦ 1/2 H	100
	1/2 H < L ≦ H	200
H <l< th=""><th colspan="2">Set the stand as : L ≦ H</th></l<>	Set the stand as : L ≦ H	

Close the bottom of the installation frame to prevent the discharged air from being bypassed.

If the distance exceeds the figure in te (), then there's no need to set the stand.

500 or less

500 or less

A or more

100 or more

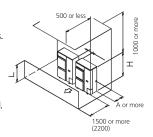
100 or more

1500 or more

100 or more

1000 or more

Note: When installing the units in a line, have to leave the distance over 100mm between the two units.


② Series installation (Note)

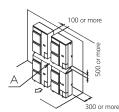
The relations between H, A and L are as follows.

	L	A
L≦H	0 < L ≦ 1/2 H	250
	1/2 H < L ≦ H	300
H <l< th=""><th colspan="2">Set the stand as : L ≦ H</th></l<>	Set the stand as : L ≦ H	

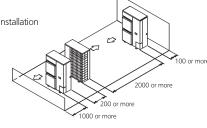
Close the bottom of the installation frame to prevent the discharged air from being bypassed.
Only two units can be installed for this series.

If the distance exceeds the figure in te (), then there's no need to set the stand.

100 or more

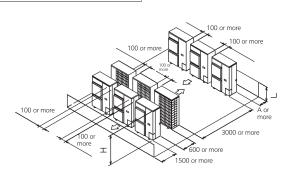

(D) Double-decker installation

② Obstacle on the suction side. (Note) Close the gap A (the gap between the upper and lower outdoor units) to prevent the discharged air from being bypassed. Do not stack more than two unit


Set the board (field supply) as the detail A between two units to prevent the drainage from freezing.

Leave enough space between the layer one and the

(E) Multiple rows of series installation (on the rooftop, etc.)


① One row of stand-alone installation

2 Rows of series installation (2 or more)

The relations between H, A and L are as follows.

	L	A
L≦H	0 < L ≦ 1/2 H	250
	1/2 H < L ≦ H	300
H <l< td=""><td colspan="2">Can not be installed</td></l<>	Can not be installed	

3D083122F